

Designation: awmhhi01a-04 Last updated: 8/2/23

Holzforschung Austria Source:

Editor: HFA, PLB

External wall - awmhhi01a-04

external wall, solid wood construction, ventilated, with dry lining, with cladding, other surface

Performance rating

REI from inside Fire protection 90 performance REI from outside 60 Maximum ceiling height = 3 m; maximum load $E_{d,fi}$ = 35,0 kN/lfm

Classified by HFA

Germany

REI 60 (from inside/from outside); Attention: REI 90 (from inside) possible with 2x12,5mm gypsum plaster board type DF/gypsum fibre board

Load E_{d,fi} according to the German certification document

Corresponding proof: manufacturer specific

Thermal performance Calculated by TUM	U Diffusion	0.12 W/(m ² K) suitable
Acoustic performance	R_w (C;C _{tr}) $L_{n,w}$ (C _I)	56(-2;-7) dB
Assessed by HFA Assessed by Müller-BBM		
Mass per unit area	m	107.20 kg/m ²

Calculation based on gypsum plaster board type DF

Note: Attention: REI 90 (from inside) in Germany possible with 2x12,5mmgypsum plaster board type DF/gypsum fibre board

Register of building materials used for this application, cross-section (from outside to inside, dimensions in mm)

	Thickness	Building material	Thermal per	Reaction to fire			
				μ min – max	ρ	С	EN
Α	24.0	larch wood external wall cladding	0.155	150	600	1.600	D
В	30.0	spruce wood battens offset (30/60) - ventilation	0.120	50	450	1.600	D
С	15.0	fibreboard (MDF)	0.140	11	600	1.700	D
D	300.0	Light composite wood-based beams (I-beams) with solid wood flanges (60/45) and hard board intermediate web (\geq 6,7) e=625	0.400	20 - 30	800	1.700	D
Е	300.0	Cellulose fibre [040; 50]	0.040	1	50	2.000	E
F	100.0	cross laminated timber (at least 3-layers, top layer at least 30mm)	0.130	50	500	1.600	D
G	70.0	spruce wood battens 60/60 on resilient clips, e=625	0.120	50	450	1.600	D
Н	50.0	mineral wool [040; 11; <1000°C]	0.040	1	11	1.030	A1
I	12.5	gypsum plaster board type DF or	0.250	10	800	1.050	A2
I	12.5	gypsum fibre board	0.320	21	1000	1.100	A2

Sustainability rating (per m²)

Database ecoinvent		Database GaBi (ÖKOBAUDAT)			
Ol3 _{Kon}	35.9	Built-in renewable materials	kg	101.400	
Calculated by HFA		Biogenic carbon in kg CO ₂ -e.	kg CO ₂	141.840	
		Energy use of Primary Energy	MJ	1087.970	
		Share of renewable PE	%	44.11	
		Calculated by TUM			

Designation: awmhhi01a-04 Last updated:

8/2/23 Holzforschung Austria Source:

HFA, PLB Editor:

Details of sustainability rating

Database ecoinvent

	in the second se					
Lifecycle	GWP	AP	EP	ODP	POCP	
(Phases)	[kg CO ₂ -e.]	[kg SO ₂ -e.]	[kg PO ₄ -e.]	[kg R11-e.]	[kg Ethen-e.]	
A1 - A3		0.217	0.093	3,50E-6	0.054	
					,	·
Lifecycle	PERE	PERM	PERT	PENRE	PENRM	PENRT
(Phases)	[MJ]	[MJ]	[MJ]	[MJ]	[MJ]	[MJ]
A1 - A3	121.260	1386.219	1507.479	665.247	36.238	701.484

Database GaBi (ÖKOBAUDAT)

Lifecycle	GWP	AP	EP	ODP	POCP
(Phases)	[kg CO ₂ -e.]	[kg SO ₂ -e.]	[kg PO ₄ -e.]	[kg R11-e.]	[kg Ethen-e.]
1 - A3		0.138	0.028	4,14E-6	0.028
1 - C4		0.008	0.011	2,28E-7	0.001
A1 - C4		0.148	0.040	4,38E-6	0.030

Lifecycle	PERE	PERM	PERT	PENRE	PENRM	PENRT
(Phases)	[MJ]	[MJ]	[MJ]	[MJ]	[MJ]	[MJ]
A1 - A3	478.577	1625.972	2101.286	577.676	33.467	610.640
C1 - C4	0.982	-1377.285	-1376.304	24.865	-22.975	1.890
A1 - C4	479.940	248.946	725.622	608.031	10.544	618.070