Designation:	gdrnxa05a-11
Last updated:	$8 / 2 / 23$
Source:	Holzforschung Austria
Editor:	HFA, PLB

Intermediate floor - gdrnxa05a-11

intermediate floor, timber frame construction, suspended, wet, without filling, other surface

Performance rating

Fire protection REI 30 performance

Load $\mathrm{E}_{\mathrm{d}, \mathrm{fi}}$ according to the German certification document
Corresponding proof: DIN 4102-4:2016-05, Tabelle 10.11, Zeile 1

Thermal performance	U Diffusion	suitable
Acoustic performance	$\mathrm{R}_{\mathrm{w}}\left(\mathrm{C}_{;} \mathrm{C}_{\mathrm{tr}}\right)$	$59(-1 ;-7) \mathrm{dB}$
	$\mathrm{L}_{\mathrm{n}, \mathrm{w}}\left(\mathrm{C}_{\mathrm{l}}\right)$	$60(0)$

Assessed by Müller-BBM

Mass per unit area m
$158.00 \mathrm{~kg} / \mathrm{m}^{2}$
Calculation based on gypsum plaster board type DF

Register of building materials used for this application, cross-section (from outside to inside, dimensions in mm)

	Thickness	Building material	Thermal performance λ μ min - max				Reaction to fire EN
A	50.0	anhydrite screed	0.700	10	2200	1.300	A1
B		plastic separation layer	0.200	100000	1400	1.400	E
C	30.0	impact sound absorbing subflooring MW-T	0.035	1	68	1.030	A1
D	18.0	OSB	0.130	200	600	1.700	D
E	240.0	construction timber (80/..; e=625)	0.120	50	450	1.600	D
F	100.0	mineral wool [040; $30 ; \geq 1000^{\circ} \mathrm{C}$]	0.040	1	30	1.030	A1
G	12.0	OSB	0.130	200	600	1.700	D
H	27.0	resilient channel					
1	12.5	gypsum plaster board type DF or	0.250	10	800	1.050	A2
1	12.5	gypsum fibre board	0.320	21	1000	1.100	A2

Sustainability rating (per m²

Database ecoinvent

$\mathrm{OI3}_{\text {Kon }}$	41.4
Calculated by HFA	

Database GaBi (ÖKOBAUDAT)

Built-in renewable materials	kg	33.140
Biogenic carbon in $\mathrm{kg} \mathrm{CO}_{2}$-e.	kg CO	
2		49.920
Energy use of Primary Energy	MJ	703.900
Share of renewable PE	$\%$	21.80
Calculated by TUM		

Calculated by TUM

Details of sustainability rating

Database ecoinvent

Lifecycle (Phases)	GWP $\left[\mathrm{kg} \mathrm{CO}_{2}-\mathrm{e} .\right]$	$\begin{aligned} & \mathrm{AP} \\ & \text { [kg SO } \\ & \text {-e. }] \end{aligned}$	$\begin{aligned} & \mathrm{EP} \\ & {\left[\mathrm{~kg} \mathrm{PO}_{4} \text {-e. }\right]} \end{aligned}$	ODP [kg R11-e.]	POCP [kg Ethen-e.]	
A1-A3		0.175	0.078	2,63E-6	0.041	
Lifecycle (Phases)	PERE [MJ]	PERM [MJ]	$\begin{aligned} & \text { PERT } \\ & \text { [MJ] } \\ & \hline \end{aligned}$	PENRE [MJ]	PENRM [MJ]	PENRT [MJ]
A1-A3	125.655	544.594	670.249	570.728	25.504	596.233

Database GaBi (ÖKOBAUDAT)

Lifecycle (Phases)	GWP $\left[\mathrm{kg} \mathrm{CO}_{2}-\mathrm{e} .\right]$	$\begin{aligned} & \text { AP } \\ & {\left[\mathrm{kg} \mathrm{SO}_{2}\right. \text {-e.] }} \end{aligned}$	$\begin{aligned} & \mathrm{EP} \\ & {\left[\mathrm{~kg} \mathrm{PO}_{4}\right. \text {-e.] }} \end{aligned}$	ODP [kg R11-e.]	POCP [kg Ethen-e.]	
A1-A3		0.147	0.021	8,57E-7	0.030	
C1-C4		0.009	0.003	6,01E-8	0.001	
A1-C4		0.160	0.026	9,25E-7	0.030	
Lifecycle (Phases)	PERE [MJ]	PERM [MJ]	PERT [MJ]	PENRE [MJ]	PENRM [MJ]	PENRT [MJ]
A1-A3	152.010	578.943	732.183	535.120	31.390	566.658
C1-C4	1.032	-572.502	-570.331	9.451	-12.800	12.250
A1-C4	153.426	6.701	162.978	550.476	18.642	593.006

